

ESTUDIO NÚMERICO Y EXPERIMENTAL DE UNA BOMBA DE CALOR AGUA-AGUA USANDO CO $_2$ COMO REFRIGERANTE

Presentado por

Víctor Francisco Sena Cuevas

14 de Agosto, 2024

- 1. Introduction
- 2. State of the art
- 3. Objectives
- 4. Facility description
- 5. Test methodology and results
- 6. Conclusions

INTRODUCTION

© CO₂ heat pump for hot water generation, EN-14511-2 and UNE-EN-16147

The optimal pressure (P_{opt})

Influence of liquid receiver pressure (P_{Ir}) and the internal heat exchanger (IHX)

Comparison of different configurations

P_{opt}

H₂O

STATE OF THE ART

2.1. CO₂ and other refrigerants

Refrigerant group	Refrigerant examples	rigerant examples Estimated period ODP GWP _{100-yrs}		Atmospheric lifetime (years)	Flammability		
CFCs	R11, R12, <u>R13</u> , R115	1020 1000	0.6-1	4750-14400	45 to 1700	Nonflammable	
HCFCs	<u>R22</u> , R141b, R124	1920-1990	0.02-0.11	400-1800	1 to 20	Nonflammable	
HFCs	<u>R407C</u> , <u>R32</u> , R41 , R23, <u><i>R134a, R410A</i>, R404A</u>	1990-2010	0	100-14900	1 to 300	Nonflammable or middle flammable	
HFOs	<u>R1234yf</u> , R1234ze, R1234yz, R513A	2010- present	0	0-573	-	Middle flammable	
Natural	HC (<u>R290</u> , <u>R600</u> , R600a), R1270).		0	0-4	Four days	HCs: Highly flammable	
refrigerants	<u>R717</u>		0	0	rew days	Flammable	
	R744	1830-1930		1 (or zero)		Nonflammable	

For nearly all of refrigerants, the critical pressure ranges between 30 bar and 60 bar, except water vapor (221 bar), ammonia (113 bar), and CO₂ (73.8 bar). (Lorentzen, 1994)

2.2. Different configurations used in CO₂ applications

Single-stage cycles

2.3. Heat exchangers optimization

2.4. The liquid receiver bypass

Test	Configuration	Evaporator					oler	Liquid receiver	Maxim	Maximum variation						
type		T _{Glic,in} (°C)	$rac{q_{ m Glic,in}}{({ m m}^3~{ m h}^{-1})}$	P _{ev} (MPa)	ΔP _{ev} (%)	<i>T_{W,in}</i> (°C)	$rac{q_{\mathrm{W,in}}}{(\mathrm{m}^3~\mathrm{h}^{-1})}$	P _{Liq Rec} (MPa)	TSH (°C)	Δṁ _{GC} (%)	Δṁ _{Ev} (%)	ΔQ̀ _{ev} (%)	ΔP _C (%)	ΔCOP (%)	$\Delta T_{\rm Dis}$ (°C)	
1	Inj. before IHX	5.03	1.01	2.59	4.42	24.99	1.01	3.03	28.35	9.0	-24.1	5.10	1.57	3.48 个	-5.57	
1	Inj. after IHX	4.90	1.02	2.59	3.69	25.01	1.02	3.04	25.77	10.9	-24.3	5.12	1.63	3.43	-8.95	
1	Inj. Compressor	4.97	1.02	2.59	4.26	25.08	1.02	3.02	25.59	11.45	-23.76	<u>5.34</u>	2.79	2.49	-8.95	
2	Inj. before IHX	5.07	1.01	2.73	4.09	34.90	1.03	4.10	31.31	10.5	-28.1	4.10	2.60	1.47	-6.61	
2	Inj. after IHX	5.01	0.99	2.76	4.77	35.15	1.02	3.22	26.43	16.5	-35.18	6.78	2.15	4.53	-12.50	
2	Inj. Compressor 🗙	4.94	1.02	2.74	4.54	34.85	1.02	3.25	23.71	16.2	-31.4	<u>9.81</u> *	2.62	<u>7.01</u> \star	-14.68	
3	Inj. before IHX 🛧	15.11	1.02	3.21	2.44	25.12	1.02	4.01	21.59	8.23	-25.2	3.87	0.56	3.30 个	-4.19	
3	Inj. after IHX	15.06	1.02	3.21	2.65	24.93	1.02	3.97	19.87	8.44	-26.8	0.49	-0.35	0.84	-6.98	
3	Inj. Compressor	15.00	1.01	3.22	2.76	24.92	1.02	3.81	17.02	10.5	-26.5	2.72	0.92	1.78	-8.95	
4	Inj. before IHX 个	14.99	1.00	3.38	2.68	34.59	1.00	4.07	23.28	9.6	-31	7.67	1.73	5.84	-6.56	
4	Inj. after IHX	14.99	1.01	3.44	4.21	35.05	1.00	4.10	19.57	16.4	-29.3	5.17	0.59	4.55	-11.54	
4	Inj. compressor	15.07	1.01	3.46	5.10	35.04	1.01	3.85	16.10	17.4	-33.3	6.12	2.07	3.97	-14.60	

Results obtained for different bypass injection points, and the improvement (%) when compared to closed bypass cycle in a refrigeration plant. (Cabello et al., 2012)

2.5. The gas cooler optimal pressure

	Author	Expression	Conditions, when	Mode
		Single-stage cycles		
	(Kauf, 1999)	$P_{opt}(bar) = 2.6 \cdot T_{amb} = 2.6 \cdot T_c - 7.54.$	$35 \text{ °C} < T_{amb} < 50 \text{ °C}$, and $91 \text{ bar} < P_{opt} < 130 \text{ bar}$.	Cooling
	(Liao et al., 2000)	$P_{opt}(bar) = (2.778 - 0.0157 \cdot T_e) \cdot T_c + 0.381 \cdot T_e - 9.34.$	$-10^{\circ}C < T_c < 20^{\circ}C, 30^{\circ}C < T_c < 60^{\circ}C, and 71 bar < P_{opt} < 120 bar.$	Cooling
	(Sarkar et al., 2004)	$P_{opt} (bar) = 4.9 + 2.256 \cdot T_c - 0.17 \cdot T_e + 0.002 \cdot T_c^{2}.$	$-10^{\circ}C < T_e < 10$, and $35^{\circ}C < T_c < 50^{\circ}C$.	Both
	(Chen and Gu, 2005)	$P_{opt}(bar) = 2.304 \cdot T_{amb} + 19.29.$	There is not IHX and evaporator quality is x=1.0.	Cooling
$T_c = T_{cond,out} =$		$2.68 \cdot T_{amb} + 0.975 = 2.68 \cdot T_c - 6.797.$	Using 2.9 °C as the temperature approach at the gas cooler outlet. $10^{\circ}C < T < 10^{\circ}C > 25^{\circ}C < T < 50^{\circ}C$ and 80 has	Cooling
$T_{acro} = \text{Refrigerant}$			$= 10 \ c < T_e < 10 \ c, 35 \ c < T_c < 50 \ c, and 80 \ bar < P_{ent} < 135 \ har.$	
temperature out of	(Sarkar et al., 2006)	$P_{opt}(bar) = 85.45 + 0.774 \cdot T_{GC,wi}.$	$20 ^{\circ}\text{C} < T_{wi} < 40 ^{\circ}\text{C}.$	Both
the gas cooler.	(Sawalha, 2008)	$P_{opt}(bar) = 2.7 \cdot (T_{amb} + T_c) - 6.1.$	$25^{\circ}C < T_{amb} < 45^{\circ}C$, and 75 bar $< P_{opt}$ < 135 bar.	Cooling
$I_e = I_{evap} = \text{Refrigerant}$ evaporation	(Kim et al., 2009)	$P_{opt}(bar) = 1.938 \cdot T_c + 9.872.$	$25^{\circ}C < T_{amb} < 45^{\circ}C$, and 75 bar $< P_{opt} < 135$ bar.	Cooling
temperature.	(Aprea and Maiorino, 2009)	$P_{opt}(bar) = P_{opt,Liao} - 0.003 \cdot T_c + 0.174.$	$P_{opt,Liao} (bar) = (2.778 - 0.0157 \cdot T_e) \cdot T_c + 0.381 \cdot T_e - 9.34.$	Cooling
	(Zhang et al., 2010)	$P_{opt}(bar) = P_{opt,Liao} + 0.00473 \cdot T_c - 0.1801.$	$\begin{aligned} P_{opt,Liao} \ (bar) \\ = (2.778 - 0.0157 \cdot T_e) \cdot T_c + 0.381 \cdot T_e - 9.34. \end{aligned}$	Heating
	(Ge and Tassou,	$P_{opt}(bar) = 1.352 \cdot T_{amb} + 44.34.$	$0^{\circ}C \le T_{amb} \le 20^{\circ}C.$	Cooling
	2011a)	72.05 bar.	$20^{\circ}C \le T_{amb} \le 22^{\circ}C$ (subcritical cycle).	
		75 bar.	$20^{\circ}C \le T_{amb} \le 22^{\circ}C.$	
		75 pur. $P = (har) - 22426 \cdot T = \pm 11541$	$22 C \leq I_{amb} \leq 27 C.$ $T = 27^{\circ}C$	
	(Go and Tassou	$P_{opt}(bar) = 0.110T^{0.887}(-20.427D^2 - 0.00D + 1.170c^2)$	$T_{amb} \ge 27$ C. <i>P</i> is the coefficient ratio of high temperature	Cooling
	2011b)	$P_{opt}(bar) = 0.119 I_{amb}(-28.437 R_{ba} - 8.09 R_{ba} + 1.178 \epsilon_{SHX} - 0.844 \epsilon_{SHX} - 4.772 R_{ba} \epsilon_{SHX} + 33.82).$	compressor. \mathcal{E}_{SHX} the effectiveness of suction line	Cooling
		P. (har)	-15° ($< T_{\rm max} < 5^\circ$ (
	(Wang et al., 2013)	$= 23.08391 + 1.22379 \cdot T_{-2} = -0.004707 \cdot T^{-2} + 0.16207 \cdot T$	T_{wo} , is water outlet temperature, in the range:	
		$P_{opt} (bar) = 10.98 + 1.06442 \cdot T_{wo} + 1.01404 \cdot T_{amb} - 0.01216 T_{amb}^{2}.$	$55^{\circ}C < T_{wo} < 80^{\circ}C.$	Heating
	(Qi et al., 2013)	$P_{opt}(bar) = 132.2 - 8.4 \cdot T_c + 0.3 \cdot T_c^2 - 27.7 \cdot 10^{-4} \cdot T_c^3.$	$-15^{\circ}C < T_{amb} < 30^{\circ}C$, and $25^{\circ}C < Tc < 45^{\circ}C$.	Heating

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and results, 6. Conclusions and future works, 7. Acknowledgments

	Author	Expression	Conditions, when	Mode							
	(Yang et al., 2015)	$P_{opt}(bar) = 2.918T_c + 0.471T_e - 0.018T_eT_c - 13.955.$ $P_{opt}(bar) = 2.759T_c - 9.912.$	$-10^{\circ}C < T_c < 20^{\circ}C, 30^{\circ}C < T_c < 60^{\circ}C, and 71 < P_{opt} < 120 \ bar.$	Cooling							
	(Shao et al., 2018)	$P_{opt}(MPa) = min\{0.240 \cdot T_c, 0.132 \cdot T_{c,max} + 3.89\}.$	$40^{\circ}C \leq T_{c,max} \leq 60^{\circ}C$, and $30^{\circ}C \leq T_c \leq T_{c,max}$.	Both							
	(Song and Cao, 2018)	$P_{opt} (bar) = 34.5 + 1.135 \cdot T_{w,f} + 1.1 \cdot (T_{w,s} - T_{w,f}) + 0.7 \cdot T_{air}.$	$\begin{array}{l} Ambient \ temperature: -20^{\circ}C < T_{amb} < -7^{\circ}C \\ Water \ return \ temperature, (wf): 40^{\circ}C < w, f < 50^{\circ}C, \\ and \ water \ suply \ temperature \ (w,s): 50^{\circ}C < w, s \\ < 70^{\circ}C. \end{array}$	Heating							
	Using ejector										
$T_c = T_{cond out} =$	(Sarkar, 2008)	$P_{opt} (bar) = 22.7 + 0.21T_e + 1.06T_c - 0.0094T_eT_c + 0.0213T_c^2.$	$-45^{\circ}C < T_e < 5^{\circ}C, 30^{\circ}c < T_c < 60^{\circ}C.$	Both							
	(Elbel and Hrnjak, 2008)	$P_{opt}(bar) = 1.6T_c + 30.$	$35^{\circ}C < T_{amb} < 50^{\circ}C$, 88 $bar < P_{opt} < 120 bar$.	Cooling							
<i>T_{ac.ro}</i> = Refrigerant	(Xu et al., 2012)	$P_{opt}(bar) = 1.18T_c + 56.$		Heating							
temperature out of		Two-stage cycle									
the gas cooler.	(Agrawal et al., 2007)	$P_{opt} (bar) = 25.11 - 0.087 \cdot T_e + (0.973 + 0.019 \cdot T_c) \cdot T_c.$ (Flash gas bypass).									
$T_e = T_{evap} = \text{Refrigerant}$		$P_{opt}(bar) = 16.94 - 0.08T_e + (1.201 + 0.0201T_c)T_c.$ (Flash intercooling).	$-50^{\circ}C < T_e < -30^{\circ}C$, and $30^{\circ}C < T_c < 50^{\circ}C$.	Heating							
evaporation temperature.		$P_{opt} (bar) = -18.13 - 0.202T_e + (2.741 + 0.006T_c)T_c.$ (Compression intercooling).									
·	(Yari, 2009)	$P_{opt} (bar) = -10.78 - 0.323T_e - 0.00134T_e^2 + 3.001T_c - 0.00775T_c^2 + 0.0068T_eT_c.$	Two-stage, using ejector.	Cooling							
		Computation algorith	ims								
	(Cecchinato et al., 2012,	Several computational strategies have been studied (the order	is not necessarily related to the authors citing).	Heating,							
	2010; Hu et al., 2015; Liu	-Computational intelligence algorithms and particle swarm tech	nnique.	Cooling							
	et al., 2018, 2017;	-Correlation-free on-line optimal control method.		Heating							
	Minetto, 2011;	-A logic control able to develop a real time calculation of COP.		Heating							
	Peñarrocha et al., 2014;	-On-line artificial neural network system identification techniqu	ue (ANN).	Heating							
	Rampazzo et al., 2019;	-Model-based optimization strategy that employed a genetic al	gorithm.	Cooling							
	Song et al., 2019; Yin et	-Group method of data handling-type (GMDH) and a PSO-BP-ty	pe (particle swarm optimization and back-propagation)	Cooling							
	al., 2019; Zhang and Zhang, 2011)	Porturb and Observe approach (P&O) instead of maximizing the	ha COP	Cooling,							
	Znang, 2011)	-A perturbation based extremum seeking control scheme (ESC)		Cooling							

2.6. Technological situation of the heat pumps currently in the market, including CO₂ heat pumps

- Most common conventional refrigerants: R134a and R410A.
- For $T_{ev,wi}$: 0°C to 25°C, CO₂ offers good COPs around 4.0, 3.6, and 3.0 for $T_{gc,wi/o}$: 10/60°C, 20/60°C, and 30/60°C, respectively

Display Digital

OBJECTIVES

3.1. Main objective

To experimental and numerically study different configurations of a CO₂ water-to-water heat pump for hot water generation for both space heating and DHW applications in order to contribute to the design and optimization of CO₂ water-to-water heat pumps and the environmental preservation.

3.2. Specific objectives

- To study the influence that the liquid receiver pressure and the IHX efficiency have on the COP when working at a constant pressure (out of the optimal).
- To analyze the optimal pressure, numerical and experimentally, and the influence that different variables have on this optimal pressure of operation.
- To evaluate the CO₂ water-to-water heat pump when working on space heating application, comparing the different configurations and analyzing the influence of different variables, including a numerical study about varying the heat transfer area of the different heat exchangers.
- To study the CO₂ water-to-water heat pump in DHW application, comparing the different configurations, including when working at optimal or constant pressure.

FACILITY DESCRIPTION

HW1

(B)

HW2

17 0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and Results, 6. Conclusions and future works, 7. Acknowledgments

4.2. Configurations to be studied

description

Facility

4

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and results, 6. Conclusions and future works, 7. Acknowledgments

4.3. Main elements of the refrigerant loop

Element	Manufacturer	Model	Specifications
Evaporator	Swep PHE	B8Tx26P	Heat transfer area (A _{ht}) 0.552 m ²
Compressor	Dorin	CD300H	Displacement volume 1.46 m ³ /h
Gas cooler	Swep PHE	B16x34P	$A_{ht} = 1.31 \text{ m}^2$
Liquid to vapor heat exchanger	Swep PHE	B17x4P	$A_{ht} = 0.082 \text{ m}^2$
Back pressure expansion valve	Carel	E2V11	
Thermostatic expansion valve	Carel	E2V24	

4.4. Main elements of the water loop

Element	Manufacturer	Model, specifications
Three-ways valve	Sauter	AVM105SF132
Water circulation pumps	Wilo	Stratos 30/1-12
Water-to-water heat exchanger	Alfa Laval PHE	T2-BFG, A _{ht} =0.14 m ²
PID for the temperature control	WATLOW	EZ Zone

4.5. Measuring devices and their accuracy

Measured variable	Device	Point	Measuring range	Accuracy
Temperature	Pt100 RTD class A 1/10 DIN	1-13, 15, CW1&2, HW1&2	223 – 523 K	\pm 0.1 [K]
Abcoluto proceuro	Yokogawa EJX510A ECS	1, 10, 11	0 – 5 MPa	\pm 2.1·10 ⁻³ [MPa]
Absolute pressure	Yokogawa EJX510A JDS	2, 3, 5, 7, 9	0 – 12 MPa	$\pm5\cdot10^{-3}$ [MPa]
Differential pressure	Yokogawa EJX110A JHS	4, 6, 11, 13, HW2, CW2	0–0.1 MPa	$\pm0.26\cdot10^{-3}[{ m MPa}]$
Massflow rate	Yokogawa RCCS32	9	0-0.1 kg·s ⁻¹	$\pm 0.0027 \cdot \dot{m} \pm 5.28 \cdot 10^{-6} [\text{kg} \cdot \text{s}^{-1}]$
IVIASS NOW Fale	Yokogawa RCCT34	14	0-0.1 kg·s ⁻¹	\pm 0.0056· \dot{m} \pm 4.17·10 ⁻⁵ [kg·s ⁻¹]
Motor flow roto	SIEMENS FM MAGFLO MAG5100	CW1	$0 - 0.1111 \cdot 10^{-2} \text{ m}^3 \cdot \text{s}^{-1}$	$\pm 0.002 \cdot \dot{V} \pm 4.91 \cdot 10^{-7} \ [m^3 \cdot s^{-1}]$
water now rate	SIEMENS FM MAGFLO MAG5100	HW1	$0 - 0.1111 \cdot 10^{-2} \text{ m}^3 \cdot \text{s}^{-1}$	$\pm 0.002 \cdot \dot{V} \pm 4.91 \cdot 10^{-7} \ [m^3 \cdot s^{-1}]$
Electric power	SINEAX M563	1	0–2500 W	\pm 0.01 $\cdot\dot{W}$ [W]

TEST METHODOLOGY AND RESULTS

Ph.D Thesis: Experimental and numerical study of a water-to-water heat pump working with CO₂

S

Ţ

5.1. Variables recording and data treatment

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments **21**

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments ²²

5.3. Influence of the internal heat exchanger (IHX). Experimental results.

Test order (#)	<i>SC</i> (K)	IHX valve position	<i>T_{ev,wi/o}</i> (°C)	<i>SH</i> (К)	<i>Τ_{gc,wi/o}</i> (°C)	P _{gc} (bar)	*P _{lr} (bar)	η _{IHX}	<i>COP</i> (-)
1	0 K	Totally closed					67.2	0 %	3.9142
2	1.6 K	Partially	10/7	EV	20/25	00	64.9	22 %	3.9709
3	2.7 K	Opened	10/7	ЛС	50/55	80	63.2	36 %	4.0021
4	5.8 K	Totally opened					59.6	73 %	4.1630

Summary of the four cycles when increasing η_{HX} through the SC, (all-in-one).

P-h diagram when increasing the subcooling (SC)

5.4. The optimal pressure study

5.4.1 Numerical model

_	Simplified model based only on the refrigerant cycle.											
	Т _{еvap} (°С)	<i>SH</i> (К)	η _{ιнx} (-)	P _{lr} (bar)	<i>Т_{gc,ro}</i> (°С)	P_{gc} (bar)						
-	5-25	3-7	0-0.9	P _{min} & P _{max}	10-60	74-140						

Compressor modeling: AHRI 540-2015

 $\dot{m}_r = C_1 + C_2 \cdot T_0 + C_3 \cdot p_c + C_4 \cdot T_0^2 + C_5 \cdot T_0 \cdot p_c + C_6 \cdot p_c^2 + C_7 \cdot T_0^3 + C_8 \cdot p_c \cdot T_0^2 + C_9 \cdot T_0 \cdot p_c^2 + C_{10} \cdot p_c^3$ $\dot{W}_{r} = C_{1} + C_{2} \cdot T_{0} + C_{3} \cdot p_{c} + C_{4} \cdot T_{0}^{2} + C_{5} \cdot T_{0} \cdot p_{c} + C_{6} \cdot p_{c}^{2} + C_{7} \cdot T_{0}^{3} + C_{8} \cdot p_{c} \cdot T_{0}^{2} + C_{9} \cdot T_{0} \cdot p_{c}^{2} + C_{10} \cdot p_{c}^{3}$

	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀
'n	0.040044	0.001141	-0.000197	1.08·10 ⁻⁵	-1.7·10 ⁻⁶	5.5 ·10 ⁻⁷	0	0	0	0
Ŵ	-1904.9	-77.21	78.17	-1.033	1.195	-0.5297	-0.0048	0.0052	-0.0032	0.0014

$$\dot{m}_{D\&R} = \dot{m}_r \cdot \left[1 + F \cdot \left[\left(\frac{\rho_a}{\rho_r}\right) - 1\right]\right] \qquad \qquad \dot{W}_{D\&R} = \dot{W}_r \cdot \frac{\dot{m}_{D\&R}}{\dot{m}_r} \cdot \frac{\Delta h_{is,a}}{\Delta h_{is,r}}$$

in

Ph.D Thesis: Experimental and numerical study of a water-to-water heat pump working with CO₂

5.4.2. Experimental results

$T_{gc,ro}$ (°	C)= 30.5, 32.5, and 36. And	$ T_{evap} ^{\circ}$	[°] C)= 5 and 10
----------------	-----------------------------	----------------------	---------------------------

						C	<u> </u>							
T _{evap} (°C)	SH (°C)	<i>Т_{gc,ro}</i> (°С)	η _{ιнх} (-)	P _{gc} (bar)	P _{lr} (bar)	COP (-)	C.	T _{evap} (°C)	SH (°C)	<i>T_{gc,ro}</i> (°C)	η _{ιнх} (-)	P _{gc} (bar)	P _{lr} (bar)	<i>COP</i> (-)
5.02	5.06	30.49	0.79	74.04	60.58	4.3983	-	10.02	5.03	30.52	0.79	74.03	53.77	5.2987
5.03	5.03	30.49	0.76	76.07	59.28	4.4011		10.02	4.96	30.50	0.76	75.05	53.96	5.3039
5.06	5.06	30.51	0.73	80.05	57.85	4.2783		10.01	5.03	30.49	0.72	80.02	51.15	5.0667
5.01	5.03	30.49	0.70	84.99	56.25	4.0779		10.04	4.97	30.51	0.69	84.99	48.90	4.8008
5.05	5.03	30.49	0.68	89.97	54.22	3.8871		10.05	6.80	30.47	0.67	90.01	46.82	4.5518
5.01	5.06	30.51	0.76	76.08	45.56	4.3847	_	10.00	5.02	32.55	0.87	77.04	57.29	4.5695
5.02	5.01	32.56	0.95	76.15	67.42	3.3275		9.98	5.02	32.56	0.82	77.97	55.91	4.7028
5.07	5.04	32.54	0.81	78.07	61.29	4.0485		10.03	4.98	32.55	0.79	78.99	54.97	4.7717
5.02	5.06	32.53	0.77	80.09	59.30	4.0580		9.97	5.00	32.53	0.77	80.03	53.93	4.7323
5.04	5.11	32.54	0.76	81.00	59.78	4.0101		10.02	4.99	32.55	0.72	85.00	51.75	4.5759
5.09	5.00	32.55	0.73	84.96	58.03	3.9303		9.99	5.00	32.55	0.69	89.97	49.58	4.3785
5.01	5.03	32.52	0.70	90.04	56.94	3.7669		10.00	4.95	36.01	0.88	83.06	58.73	3.8738
5.05	5.02	32.54	0.77	80.05	46.21	4.0435	_	10.03	4.97	36.00	0.80	84.99	56.18	4.0517
5.05	5.04	36.00	0.92	80.04	69.53	2.8378		10.03	4.97	36.01	0.79	86.02	55.29	4.0675
4.98	5.06	36.06	0.88	83.07	64.64	3.3450		10.05	4.97	36.00	0.77	87.08	54.33	4.0811
5.01	5.12	36.03	0.81	85.05	62.20	3.5090		10.01	5.01	36.03	0.74	90.03	52.99	4.0503
5.04	4.94	35.99	0.75	88.96	59.74	3.5479								
5.03	5.07	36.00	0.74	91.03	58.53	3.5263	I	Bold: Indicate t	he optimal p	pressure with t	he maximun	n and minimum	liquid receive	er pressure.

3.5221

46.29

5.03

4.99

36.00

0.75

88.96

results and methodology Tests 5

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and results, 6. Conclusions and future works, 7. Acknowledgments

5.4.3. Influence of the compressor characteristics

results

and

methodology

Tests

S

 $\dot{m}_{r} = C_{1} + C_{2} \cdot T_{0} + C_{3} \cdot p_{c} + C_{4} \cdot T_{0}^{2} + C_{5} \cdot T_{0} \cdot p_{c} + C_{6} \cdot p_{c}^{2} + C_{7} \cdot T_{0}^{3} + C_{8} \cdot p_{c} \cdot T_{0}^{2} + C_{9} \cdot T_{0} \cdot p_{c}^{2} + C_{10} \cdot p_{c}^{3}$ $\dot{W}_{r} = C_{1} + C_{2} \cdot T_{0} + C_{3} \cdot p_{c} + C_{4} \cdot T_{0}^{2} + C_{5} \cdot T_{0} \cdot p_{c} + C_{6} \cdot p_{c}^{2} + C_{7} \cdot T_{0}^{3} + C_{8} \cdot p_{c} \cdot T_{0}^{2} + C_{9} \cdot T_{0} \cdot p_{c}^{2} + C_{10} \cdot p_{c}^{3}$

5.4.4. Influence that the IHX efficiency has on the optimal pressure

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments **29**

5.4.5. Influence that the liquid receiver pressure has on the optimal pressure

30

Ŋ

5.4.6. Influence that the evaporation temperature and the superheating have on the optimal pressure

5.4.7. Correlation for the optimal heat rejection pressure control

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments **32**

5.5. Space heating application

A detailed model for the hot water generation (low, medium, high and very high temperature), and the different heat exchangers.

5.5.1. Model validation

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments ³⁴

5.5.2. The optimal pressure in space heating

5.5.3. Experimental comparison of the different configurations

Tests	Evaporator		Gas cooler		<i>ṁ_{w,gc}</i> (kg·s⁻¹)			$oldsymbol{Q}_{gc,water}$ (kW)			COP _{h,water} (-)		
order (#)	<i>Т_{еv,wi}</i> °С)	<i>T_{ev,wo}</i> (°C)	<i>Т_{gc,wi}</i> (°С)	<i>Т_{gc,wo}</i> (°С)	C1&C2	C3	C4	C1&C2	C3	C4	C1&C2	C3	C4
1	10	7	30	35	0.291	0.289	0.212	6.008	5.992	4.398	4.259	4.276	2.629
2	15	Х	Х	35	0.291	0.289	0.211	6.665	6.678	3.806	4.951	4.994	2.314
3	20	Y	Y	35	0.291	0.289		7.393	7.296		5.855	5.943	
4	25	Z	Z	35	0.291	0.289		8.750	8.895		7.339	7.468	
5	10	7	40	45	0.237	0.235	0.196	4.886	4.862	4.109	2.958	2.942	2.404
6	15	Х	Х	45	0.237	0.234	0.197	5.655	5.567	3.053	3.465	3.438	1.757
7	20	Y	Y	45	0.237	0.235		6.412	6.205		4.031	3.947	
8	25	Z	Z	45	0.238	0.234		7.151	6.957		4.709	4.665	

Space heating, C1&C2, C3 and C4, experimental results according to UNE-EN 14511 standard

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments ³⁶

5.5.3. Experimental comparison of the different configurations

Tests order	Evapo	prator	Gas c	ooler	COPc			
<mark>(</mark> #)	Т _{еv,wi} (°С)	<i>Т_{еv,wo}</i> (°С)	<i>Т_{gc,wi}</i> (°С)	<i>Т_{gc,wo}</i> (°С)	C1	C2	C3	
1	12	7	30	35	3.2891	3.3180	3.2486	
2	12	7	25	30	3.9280	3.9901	3.9947	

Space heating, C1&C2, C3 and C4, experimental results according to UNE-EN 14511 standard

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments **37**

5.5.4. Influence of the evaporator water temperature and the superheating (SH)

5.5.5. Varying all heat exchangers surface

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and results, 6. Conclusions and future works, 7. Acknowledgments

results

5.6. Domestic hot water (DHW) generation

5.6.1. Comparison of different configurations w/ and w/o P_{opt} to produce 60°C DHW

 $\mathbf{T}_{gc,wi}$ (° C) : 10-50 ° C. $\mathbf{T}_{ev,wi}$ (° C) :10 to 30 = $\Delta \mathbf{T}_{ev,wi}$ (reference test)= 5 K.

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, **5. Test methodology and results**, 6. Conclusions and future works, 7. Acknowledgments **40**

CONCLUSIONS

6.1. The gas cooler optimal pressure

- [®] The most influential parameter is the $T_{gc,ro}$. The influence of the rests of the parameters is negligible
- [®] It is possible to obtain an expression for the optimal pressure based only on the $T_{gc,ro}$.

 $P_{gc,opt} = \min(140; 9.3267 + 2.1857 \cdot T_{gc,ro})$

However, such expression does not limit the **compressor outlet temperature**, which could lead to oil degradation and compressor damages. Then, new correlations considering this parameters have been developed, and they are applicable for a wide range of reciprocating semi-hermetic compressors models since they were developed using coefficients of compressors that are already in the market.

 $T_{comp,out} = 13.403 + 2.0657 \cdot T_{gc,ro} - 2.3525 \cdot T_{evap} + 0.86806 \cdot T_{comp,in}$

If $T_{comp,out} < 140$ °C: $P_{gc,opt} = \min(140; 11.047 + 2.2756 \cdot T_{gc,ro} + 0.047279 \cdot T_{evap} - 0.20814 \cdot T_{comp,in})$.

If $T_{comp,out} \ge 140$ °C: $P_{gc,opt} = \min(140; 140.74 + 0.031555 \cdot T_{gc,ro} + 2.7227 \cdot T_{evap} - 1.0086 \cdot T_{comp,in})$.

Since the expressions proposed only depend on cycle conditions, they can be applied to any type of heat pump (water-to-water, air-to-water or even air-to-air) and can be easily programmed in a PLC.

6.2. Comparison of the different configurations in space heating and domestic hot water generation

- [®] The importance of the IHX in CO_2 transcritical cycles has been confirmed.
- The influence of the liquid receiver pressure is negligible.
- [®] Difference is negligible when using *flooded* or *dry evaporator* (*with liquid receiver*).
- [®] For low $T_{gc,wi/o}$ (30/35°C) the system could be designed for working around the optimal pressure, which is independent of the $T_{ev,w}$ (within the studied range). For the rests (medium, high and very high), an optimal pressure control is needed. For DWH, the more the $T_{ev,wi}$ or the $T_{gc,wi}$ increase (being the outlet 60°C), the more important is to control the optimal pressure.
- Solution Solution

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, **4. Facility description**, 5. Test methodology and results, 6. Conclusions, 7. Acknowledgments

CARE

0. Content, 1. Introduction, 2. State of the art, 3. Objectives, 4. Facility description, 5. Test methodology and results, 6. Conclusions, 7. Acknowledgments

ESTUDIO NÚMERICO Y EXPERIMENTAL DE UNA BOMBA DE CALOR AGUA-AGUA USANDO CO $_2$ COMO REFRIGERANTE

Presentado por

Víctor Francisco Sena Cuevas

14 de Agosto, 2024

